Homomorphic Authenticated Encryption Secure Against Chosen-Ciphertext Attack

Chihong Joo, Aaram Yun

Ulsan National Institute of Science and Technology, South Korea

Asiacrypt 2014

Motivation

Homomorphic encryption

- Allows 'homomorphic' evaluation of a function using ciphertexts.
- Active research area especially after Gentry's FHE (2009).

Application: cloud computing

- Upload FHE-encrypted data to the cloud, and erase the local copy.
- Describe a function *f* and its arguments to the cloud.
- Cloud homomorphically computes the ciphertext for the value of *f*.

Homomorphic authentication

- Upload the data to the cloud, and erase the local copy.
- When computing a function *f* on your data, you want to be sure that the returned function value is correct.
- Use homomorphic signatures, or homomorphic MACs.

Can we do both?

- Privacy and authenticity would be both important, just as in other applications
- Authenticated encryption
- How about *homomorphic* authenticated encryption?

HAE

- Homomorphic authenticated encryption (HAE)
 - Protects both privacy and authenticity
 - Encrypts/decrypts using the *secret* key
 - Allows *public* homomorphic evaluation of functions
 - A very natural primitive to consider

Gennaro-Wichs HAE?

- R. Gennaro, D. Wichs, "Fully Homomorphic Message Authenticators", Asiacrypt 2013
- Their homomorphic MAC also satisfies privacy: thus HAE, even fully homomorphic
 - But, insecure when decryption queries are allowed

Generic composition?

- How about encrypt-then-authenticate?
- Yes, it works.
- Very recently, even *fully homomorphic* AE possible via generic composition
- Not available when this work was done

Our contributions

- A simple, somewhat homomorphic construction using EF-AGCD
- Various security definitions of HAE
 - And their relationship

Homomorphic Authenticated Encryption

Labeled program

- Label τ : a pointer to a data
- Labeled program ($f, \tau_1, ..., \tau_n$)
 - Description of a function f
 - Together with description of input arguments by labels

Annotating data

- Use the cloud as if a dictionary structure
- Each data m is annotated with a label τ
- Encrypt *m* w.r.t. τ to produce *c*, and send (τ , *c*) to the cloud
- When you want to compute a function *f*, describe its arguments by labels:
 (*f*, *τ*₁, ..., *τ_n*); a labeled program

HAE

- $(ek, sk) \leftarrow \text{Gen}(1^{\lambda})$
- $c \leftarrow \operatorname{Enc}(sk, \tau, m)$
- $c \leftarrow \text{Eval}(ek, f, c_1, ..., c_n)$
- $\operatorname{Dec}(sk, (f, \tau_1, ..., \tau_n), c) \rightarrow m \text{ or } \bot$

Our construction

DGHV

- Start from a variant of symmetric DGHV for $m \in \mathbb{Z}_Q$
 - c = pq + rQ + m
 - q is uniform random on \mathbb{Z}_{q_o}
 - r is a small noise in $(-2^{\rho}, 2^{\rho})$
 - Decryption: $m = c \mod p \mod Q$

DGHV

- Ciphertext c = pq + rQ + m satisfies
 - *c* mod *p* contains the message + noise
 - $c \mod q_0$ is uniform random on \mathbb{Z}_{q_0}
- Idea: use $c \mod q_0$ as the secret homomorphism and put the authentication data $F_k(\tau)$ there
 - Adopting the technique from Catalano-Fiore MAC in Eurocrypt 2013

Our construction

• For $m \in \mathbb{Z}_Q$, use CRT to find *c* such that $c \equiv rQ + m \pmod{p}$, $c \equiv F_k(\tau) \pmod{q_0}$

Homomorphic AE

- $Dec(sk, (f, \tau_1, ..., \tau_n), c)$:
 - If $f(F_k(\tau_1), \dots, F_k(\tau_n)) \equiv c \pmod{q_0}$, then return $m \leftarrow c \mod p \mod Q$
 - Otherwise, return \perp

Indistinguishability

- IND-CPA definition: as usual
- For any *Q* with gcd(*q*₀, *Q*)=1, our scheme is IND-CPA
 - Based on the decisional error-free approximate GCD assumption

Decisional vs Computational

- Decisional EF-AGCD is equivalent to computational EF-AGCD
 - Coron, Lepoint, Tibouchi, PKC 2014
- Therefore, our IND-CPA security is based on computational EF-AGCD

Unforgeability

- $(f, \tau_1, ..., \tau_n, c)$ is not a forgery if
 - Decryption fails, or
 - Decryption gives a value v which is constantly equal to f(m1, ..., mn)

Unforgeability

- $(f, \tau_1, ..., \tau_n, c)$ is a successful forgery if
 - $Dec(sk, (f, \tau_1, ..., \tau_n), c) \neq \bot$, but
 - Type 1: $f(m_1, ..., m_n)$ is nonconstant or
 - Type 2: it is constant, but Dec(*sk*, (*f*, $\tau_1, ..., \tau_n$), *c*) $\neq f(m_1, ..., m_n)$

Strong forgery

- In classical MAC, assuming Verify(sk, m, σ)=1
 - forgery: (m, σ) with new m
 - strong forgery: (m, σ) with new m, or new σ
- Strong unforgeability: it is infeasible to produce a strong forgery
- For any m, σ is 'computationally unique'

Power of Ver. Query

- Bellare, Goldreich, and Mityagin (2004)
 - If a MAC is strongly unforgeable, then it is secure with verification oracle
 - Reason: verification oracle can be easily simulated in such a case

Homomorphic strong unforgeability

- $(f, \tau_1, ..., \tau_n, c)$ is a strong forgery if
 - $Dec(sk, (f, \tau_1, ..., \tau_n), c) \neq \bot$, but
 - Type 1: Eval(*ek*, *f*, *c*₁, ..., *c_n*) is nonconstant, or
 - Type 2: it is constant, but,
 c ≠ Eval(*ek*, *f*, *c*₁, ..., *c_n*)

Homomorphic strong unforgeability

- If HAE is strongly unforgeable, then Eval(*ek*, *f*, *c*₁, ..., *c_n*) is *essentially the only* valid ciphertext for *f*(*m*₁, ..., *m_n*)
- Just like classically, we may show that in this case the scheme is secure even when decryption oracle is available
- Modulo some technical difficulties

Relationship

SUF-CCA \longrightarrow UF-CCA $\downarrow \uparrow$ \downarrow SUF-CPA \longrightarrow UF-CPA

SUF-CPA

- It is straightforward to show that our scheme is SUF-CPA using computational EF-AGCD assumption
- So, still secure even when decryption oracle is given: SUF-CCA

IND-CCA of HE

- For HE, IND-CCA is generally not possible because of malleability
- Homomorphic IND-CCA is defined but very technical

IND-CCA of HAE

- For HAE, meaningful definition of IND-CCA is natural!
 - Adversary can homomorphically modify the challenge ciphertext *c*^{*}
 - But, in order to make a decryption query, he has to declare what function was used to make the modification

IND-CCA of HAE

- If f(m^{*}₀)≠f(m^{*}₁), then homomorphically evaluate f on the challenge ciphertext c^{*}, to produce c' then decryption query for c' will trivially reveal the challenge bit
- In the IND-CCA definition of HAE, it is forbidden to make such a decryption query

Relationship

Just like classically,
 IND-CPA + SUF-CPA → IND-CCA

Conclusion

- Proposed a simple construction of HAE based on EF-AGCD assumption
- Satisfies IND-CPA & SUF-CPA
- It follows that it satisfies IND-CCA & SUF-CCA

