
Homomorphic
Authenticated Encryption

Secure Against  
Chosen-Ciphertext Attack

Chihong Joo, Aaram Yun

Ulsan National Institute of Science and
Technology, South Korea

Asiacrypt 2014

Motivation

2

Homomorphic
encryption

• Allows ‘homomorphic’ evaluation of a
function using ciphertexts.

• Active research area especially after
Gentry’s FHE (2009).

3

• Upload FHE-encrypted data to the
cloud, and erase the local copy.

• Describe a function f and its arguments
to the cloud.

• Cloud homomorphically computes the
ciphertext for the value of f.

4

Application:  
cloud computing

Homomorphic
authentication

• Upload the data to the cloud, and erase
the local copy.

• When computing a function f on your
data, you want to be sure that the
returned function value is correct.

• Use homomorphic signatures, or
homomorphic MACs.

5

Can we do both?

• Privacy and authenticity would be both
important, just as in other applications

• Authenticated encryption

• How about homomorphic authenticated
encryption?

6

HAE

• H0momorphic authenticated encryption
(HAE)

• Protects both privacy and authenticity

• Encrypts/decrypts using the secret key

• Allows public homomorphic evaluation
of functions

• A very natural primitive to consider

7

Gennaro-Wichs
HAE?

• R. Gennaro, D. Wichs, “Fully
Homomorphic Message
Authenticators”, Asiacrypt 2013

• Their homomorphic MAC also satisfies
privacy: thus HAE, even fully
homomorphic

• But, insecure when decryption queries
are allowed

8

Generic composition?

• How about encrypt-then-authenticate?

• Yes, it works.

• Very recently, even fully homomorphic
AE possible via generic composition

• Not available when this work was done

9

Our contributions

• A simple, somewhat homomorphic
construction using EF-AGCD

• Various security definitions of HAE

• And their relationship

10

Homomorphic
Authenticated

Encryption

Labeled program

• Label τ: a pointer to a data

• Labeled program (f, τ1, …, τn)

• Description of a function f

• Together with description of input
arguments by labels

12

Annotating data

• Use the cloud as if a dictionary structure

• Each data m is annotated with a label τ

• Encrypt m w.r.t. τ to produce c, and
send (τ, c) to the cloud

• When you want to compute a function f,
describe its arguments by labels:  
(f, τ1, …, τn); a labeled program

13

HAE

• (ek, sk) ← Gen(1λ)

• c ← Enc(sk, τ, m)

• c ← Eval(ek, f, c1, …, cn)

• Dec(sk, (f, τ1, …, τn), c) → m or ⊥

14

Our construction

DGHV

• Start from a variant of symmetric DGHV
for m∈ℤQ

• c = pq + rQ + m

• q is uniform random on ℤq0

• r is a small noise in (-2ρ, 2ρ)

• Decryption: m = c mod p mod Q

16

DGHV
• Ciphertext c = pq + rQ + m satisfies

• c mod p contains the message + noise

• c mod q0 is uniform random on ℤq0

• Idea: use c mod q0 as the secret
homomorphism and put the
authentication data Fk(τ) there

• Adopting the technique from Catalano-
Fiore MAC in Eurocrypt 2013

17

Our construction

• For m∈ℤQ, use CRT to find c such that  
c ≡ rQ+m (mod p), c ≡ Fk(τ) (mod q0)

18

Our construction
ℤpq0

ℤq0

ℤQc∈ m∈

Fk(τ) ∈

mod p mod Q

mod q0

Our construction
ℤpq0

ℤq0

ℤQc∈ m∈

Fk(τ) ∈

mod p mod Q

mod q0

homomorphic

Our construction
ℤpq0

ℤq0

ℤQc∈ m∈

Fk(τ) ∈

mod p mod Q

mod q0

somewhat  

homomorphic

homomorphic

Homomorphic AE

• Dec(sk, (f, τ1, …, τn), c):

• If f(Fk(τ1), … , Fk(τn))≡c (mod q0), then 
return m ← c mod p mod Q

• Otherwise, return ⊥

20

Indistinguishability

• IND-CPA definition: as usual

• For any Q with gcd(q0, Q)=1, our scheme
is IND-CPA

• Based on the decisional error-free
approximate GCD assumption

21

Decisional vs
Computational

• Decisional EF-AGCD is equivalent to
computational EF-AGCD

• Coron, Lepoint, Tibouchi, PKC 2014

• Therefore, our IND-CPA security is
based on computational EF-AGCD

22

Unforgeability

• (f, τ1, …, τn, c) is not a forgery if

• Decryption fails, or

• Decryption gives a value v which is
constantly equal to f(m1, …, mn)

23

Unforgeability

• (f, τ1, …, τn, c) is a successful forgery if

• Dec(sk, (f, τ1, …, τn), c)≠⊥, but

• Type 1: f(m1, …, mn) is nonconstant or

• Type 2: it is constant, but  
Dec(sk, (f, τ1, …, τn), c)≠f(m1, …, mn)

24

Strong forgery
• In classical MAC, assuming  

Verify(sk, m, σ)=1

• forgery: (m, σ) with new m

• strong forgery: (m, σ) with new m, or
new σ

• Strong unforgeability: it is infeasible to
produce a strong forgery

• For any m, σ is ‘computationally unique’

25

Power of Ver. Query

• Bellare, Goldreich, and Mityagin (2004)

• If a MAC is strongly unforgeable, then it
is secure with verification oracle

• Reason: verification oracle can be easily
simulated in such a case

26

Homomorphic strong
unforgeability

• (f, τ1, …, τn, c) is a strong forgery if

• Dec(sk, (f, τ1, …, τn), c)≠⊥, but

• Type 1: Eval(ek, f, c1, …, cn) is
nonconstant, or

• Type 2: it is constant, but,  
c ≠ Eval(ek, f, c1, …, cn)

27

Homomorphic strong
unforgeability

• If HAE is strongly unforgeable, then
Eval(ek, f, c1, …, cn) is essentially the
only valid ciphertext for f(m1, …, mn)

• Just like classically, we may show that in
this case the scheme is secure even when
decryption oracle is available

• Modulo some technical difficulties

28

Relationship

UF-CPA

UF-CCA

SUF-CPA

SUF-CCA

SUF-CPA

• It is straightforward to show that our
scheme is SUF-CPA using
computational EF-AGCD assumption

• So, still secure even when decryption
oracle is given: SUF-CCA

30

IND-CCA of HE

• For HE, IND-CCA is generally not
possible because of malleability

• Homomorphic IND-CCA is defined but
very technical

31

IND-CCA of HAE

• For HAE, meaningful definition of  
IND-CCA is natural!

• Adversary can homomorphically modify
the challenge ciphertext c*

• But, in order to make a decryption
query, he has to declare what function
was used to make the modification

32

IND-CCA of HAE

• If f(m*0)≠f(m*1), then homomorphically
evaluate f on the challenge ciphertext c*,
to produce c’ then decryption query for
c’ will trivially reveal the challenge bit

• In the IND-CCA definition of HAE, it is
forbidden to make such a decryption
query

33

Relationship

• Just like classically, 
IND-CPA + SUF-CPA → IND-CCA

34

Conclusion

• Proposed a simple construction of HAE
based on EF-AGCD assumption

• Satisfies IND-CPA & SUF-CPA

• It follows that it satisfies IND-CCA &
SUF-CCA

35

Thank you!

