
Homomorphic 
Authenticated Encryption 

Secure Against  
Chosen-Ciphertext Attack

Chihong Joo, Aaram Yun 

Ulsan National Institute of Science and 
Technology, South Korea 

Asiacrypt 2014



Motivation
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Homomorphic 
encryption

• Allows ‘homomorphic’ evaluation of a 
function using ciphertexts. 

• Active research area especially after 
Gentry’s FHE (2009).
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• Upload FHE-encrypted data to the 
cloud, and erase the local copy. 

• Describe a function f and its arguments 
to the cloud. 

• Cloud homomorphically computes the 
ciphertext for the value of f.
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Application:  
cloud computing



Homomorphic 
authentication

• Upload the data to the cloud, and erase 
the local copy. 

• When computing a function f on your 
data, you want to be sure that the 
returned function value is correct. 

• Use homomorphic signatures, or 
homomorphic MACs.
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Can we do both?

• Privacy and authenticity would be both 
important, just as in other applications 

• Authenticated encryption 

• How about homomorphic authenticated 
encryption?
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HAE

• H0momorphic authenticated encryption 
(HAE) 

• Protects both privacy and authenticity  

• Encrypts/decrypts using the secret key 

• Allows public homomorphic evaluation 
of functions 

• A very natural primitive to consider
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Gennaro-Wichs 
HAE?

• R. Gennaro, D. Wichs, “Fully 
Homomorphic Message 
Authenticators”, Asiacrypt 2013 

• Their homomorphic MAC also satisfies 
privacy: thus HAE, even fully 
homomorphic 

• But, insecure when decryption queries 
are allowed
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Generic composition?

• How about encrypt-then-authenticate? 

• Yes, it works. 

• Very recently, even fully homomorphic 
AE possible via generic composition 

• Not available when this work was done
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Our contributions

• A simple, somewhat homomorphic 
construction using EF-AGCD  

• Various security definitions of HAE 

• And their relationship
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Homomorphic 
Authenticated 

Encryption



Labeled program

• Label τ: a pointer to a data 

• Labeled program (f, τ1, …, τn) 

• Description of a function f 

• Together with description of input 
arguments by labels
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Annotating data

• Use the cloud as if a dictionary structure 

• Each data m is annotated with a label τ  

• Encrypt m w.r.t. τ to produce c, and 
send (τ, c) to the cloud 

• When you want to compute a function f, 
describe its arguments by labels:  
(f, τ1, …, τn); a labeled program
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HAE

• (ek, sk) ← Gen(1λ) 

• c ← Enc(sk, τ, m) 

• c ← Eval(ek, f, c1, …, cn) 

• Dec(sk, (f, τ1, …, τn), c) → m or ⊥
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Our construction



DGHV

• Start from a variant of symmetric DGHV 
for m∈ℤQ 

• c = pq + rQ + m 

• q is uniform random on ℤq0 

• r is a small noise in (-2ρ, 2ρ) 

• Decryption: m = c mod p mod Q
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DGHV
• Ciphertext c = pq + rQ + m satisfies 

• c mod p contains the message + noise 

• c mod q0 is uniform random on ℤq0  

• Idea: use c mod q0 as the secret 
homomorphism and put the 
authentication data Fk(τ) there 

• Adopting the technique from Catalano-
Fiore MAC in Eurocrypt 2013
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Our construction

• For m∈ℤQ, use CRT to find c such that  
c ≡ rQ+m (mod p), c ≡ Fk(τ) (mod q0)
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Our construction
ℤpq0

ℤq0

ℤQc∈ m∈

Fk(τ) ∈

mod p mod Q

mod q0



Our construction
ℤpq0

ℤq0

ℤQc∈ m∈

Fk(τ) ∈

mod p mod Q

mod q0

homomorphic



Our construction
ℤpq0

ℤq0

ℤQc∈ m∈

Fk(τ) ∈

mod p mod Q

mod q0

somewhat  

homomorphic

homomorphic



Homomorphic AE

• Dec(sk, (f, τ1, …, τn), c): 

• If f(Fk(τ1), … , Fk(τn))≡c (mod q0), then 
return m ← c mod p mod Q 

• Otherwise, return ⊥
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Indistinguishability

• IND-CPA definition: as usual 

• For any Q with gcd(q0, Q)=1, our scheme 
is IND-CPA 

• Based on the decisional error-free 
approximate GCD assumption
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Decisional vs 
Computational

• Decisional EF-AGCD is equivalent to 
computational EF-AGCD 

• Coron, Lepoint, Tibouchi, PKC 2014 

• Therefore, our IND-CPA security is 
based on computational EF-AGCD
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Unforgeability

• (f, τ1, …, τn, c) is not a forgery if 

• Decryption fails, or 

• Decryption gives a value v which is 
constantly equal to f(m1, …, mn)
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Unforgeability

• (f, τ1, …, τn, c) is a successful forgery if 

• Dec(sk, (f, τ1, …, τn), c)≠⊥, but 

• Type 1: f(m1, …, mn) is nonconstant or 

• Type 2: it is constant, but  
Dec(sk, (f, τ1, …, τn), c)≠f(m1, …, mn)
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Strong forgery
• In classical MAC, assuming  

Verify(sk, m, σ)=1 

• forgery: (m, σ) with new m 

• strong forgery: (m, σ) with new m, or 
new σ 

• Strong unforgeability: it is infeasible to 
produce a strong forgery 

• For any m, σ is ‘computationally unique’
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Power of Ver. Query

• Bellare, Goldreich, and Mityagin (2004) 

• If a MAC is strongly unforgeable, then it 
is secure with verification oracle 

• Reason: verification oracle can be easily 
simulated in such a case
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Homomorphic strong 
unforgeability

• (f, τ1, …, τn, c) is a strong forgery if 

• Dec(sk, (f, τ1, …, τn), c)≠⊥, but 

• Type 1: Eval(ek, f, c1, …, cn) is 
nonconstant, or 

• Type 2: it is constant, but,  
c ≠ Eval(ek, f, c1, …, cn)
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Homomorphic strong 
unforgeability

• If HAE is strongly unforgeable, then 
Eval(ek, f, c1, …, cn) is essentially the 
only valid ciphertext for f(m1, …, mn) 

• Just like classically, we may show that in 
this case the scheme is secure even when 
decryption oracle is available 

• Modulo some technical difficulties
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Relationship

UF-CPA

UF-CCA

SUF-CPA

SUF-CCA



SUF-CPA

• It is straightforward to show that our 
scheme is SUF-CPA using 
computational EF-AGCD assumption 

• So, still secure even when decryption 
oracle is given: SUF-CCA
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IND-CCA of HE

• For HE, IND-CCA is generally not 
possible because of malleability 

• Homomorphic IND-CCA is defined but 
very technical
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IND-CCA of HAE

• For HAE, meaningful definition of  
IND-CCA is natural! 

• Adversary can homomorphically modify 
the challenge ciphertext c* 

• But, in order to make a decryption 
query, he has to declare what function 
was used to make the modification
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IND-CCA of HAE

• If f(m*0)≠f(m*1), then homomorphically 
evaluate f on the challenge ciphertext c*, 
to produce c’ then decryption query for 
c’ will trivially reveal the challenge bit 

• In the IND-CCA definition of HAE, it is 
forbidden to make such a decryption 
query
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Relationship

• Just like classically, 
IND-CPA + SUF-CPA → IND-CCA
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Conclusion

• Proposed a simple construction of HAE 
based on EF-AGCD assumption 

• Satisfies IND-CPA & SUF-CPA 

• It follows that it satisfies IND-CCA & 
SUF-CCA
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Thank you!


